
IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI10.17148/IJARCCE.2016.510109 546

Detecting and Identifying Web Application

Vulnerabilities with Static and Dynamic Code

Analysis using Knowledge Mining

Vineetha K R
1
, N. Santhana Krishna

2

MPhil Scholar, AJK College of Arts and Science, Bharathiar University, Coimbatore

Asst. Professor& HOD of CS, AJK College of Arts and Science, Bharathiar University, Coimbatore

Abstract: Software developers area unit typically tasked to figure with foreign code that they are doing not perceive. A

developer may not recognize what the code is meant to try and do, however it works, however it's purported to work, a

way to fix it to create it work, however documentation could be poor, outdated, or non-existent. Moreover,

knowledgeable co-workers aren't invariably like a shot offered to assist. we have a tendency to believe that if the

developer is given with “similar” code – code that's legendary to execute within the same method or reckon constant

perform, the developer may 1) realize the similar code additional readable; 2) determine acquainted code to transfer her

existing information to the code at hand; 3) gain insights from a distinct structure that implements constant behaviour.

Various researchers have investigated code that exhibits static – matter, syntactical or structural – similarity. That is,

code that appears alike. Visual variations may vary from whitespace, layout and comments to identifiers, literals and

kinds to modified, additional and removed statements (sometimesreferred to as kind one to kind three “code clones”,

resp). Kind four could be a catch-all for all semantically similar clones, but it lacks scientific formulations to classify

them. Static detection techniques plan to match the ASCII text file text or some static mental representation

corresponding to tokens, abstract syntax trees, program dependence graphs, or a mix of multiple program

representations found static similarity at the assembly code level. However static techniques cannot invariably notice

code that behaves alike, i.e., that exhibits similar dynamic (runtime) behavior, however doesn't look alike. Once the

developer doesn't perceive the code she must work with, showing her additional code that appears regarding constant

might not be useful. Butexplaining that bound alternative code that appears quite completely different really behaves

terribly equally might offer clues to what her own code will and the way it works. so tools that notice and manage

statically similar code might miss opportunities to assist developers perceive execution behavior.

Keywords: Code Vulnerability, Code Similarity, Static and Dynamic Webpage, Code Clone, Developer Behaviour,

Runtime, Identifiers.

I. INTRODUCTION

The W WW distributions are generating a considerable

boost in the order of web sites and web applications. A

codeVulnerability is a code portion in source files that is

matching or similar to another. It is general view that code

clones make the source files very hard to modify

constantly.

Vulnerability are launched for various reasons such as lack

of a good design, fuzzy requirements, disorderly

protection and evolution, lack of suitable reuse

mechanisms, and reusing code by copy-and-paste.

Thus, code clone detection can effectively support the

improvement of the quality of a software system during

software preservation and growth. The very short time-to-

scope of a web application, and the need of method for

developing it, support an increase al expansion fashion

where new pages are usually obtained reusing (i.e.

“Vulnerability”) pieces of existing pages without

sufficient documentation about these code duplications

and redundancies.

The presence of clones increase system difficulty and the

effort to test, maintain and change web systems, thus the

identification of clones may reduce the effort devoted to

these activities as well as to facilitate the migration to

different architectures.

Knowledge Mining is that the creation of information

from structured (relational databases, XML) and

unstructured (text, documents, images) sources. The

ensuing data must be in a very machine-readable and

machine-interpretable format and should represent data in

a very manner that facilitates inferencing.

Though it's methodically the same as data extraction

(NLP) and ETL (data warehouse), the most criteria is that

the extraction result goes on the far side the creation of

structured data or the transformation into a relative

schema. It needs either the employ of existing formal data

(reusing identifiers or ontologies) or the generation of a

schema supported the supply knowledge.

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI10.17148/IJARCCE.2016.510109 547

Knowledge management (KM) is that the method of

capturing, developing, sharing, and effectively

victimisation structure data.It refers to a multi-disciplinary

approach to achieving structure objectives by creating the

most effective use of information. An established

discipline since 1991, kilometer includes courses

instructed within the fields of business administration, data

systems, management, library, and knowledge sciences.

alternative fields could contribute to kilometre analysis,

together with data and media, engineering science, public

health, and public policy.many Universities supply

dedicated Master of Science degrees in data Management.

Many giant firms, public establishments, and non-profit

organisations have resources dedicated to internal

kilometre efforts, usually as an area of their business

strategy, data technology, or human resource management

departments. many consulting firms give recommendation

concerning kilometre to those organisations. Knowledge

management efforts generally target organisational

objectives adore improved performance, competitive

advantage, innovation, the sharing of lessons learned,

integration, and continuous improvement of the

organisation. These efforts overlap with organisational

learning and should be distinguished from that by a larger

target the management of information as a strategic quality

and attention on encouraging the sharing of information.

Kilometre is AN enabler of organisational learning.

Review of literature

A code clone is a code portion in source files that is

identical or similar to another. It is common opinion that

code clones make the source files very hard to modify

consistently. Clones are introduced for various reasons

such as lack of a good design, fuzzy requirements,

undisciplined maintenance and evolution, lack of suitable

reuse mechanisms, and reusing code by copy-and-paste.

[1]. Maintaining software systems is getting more complex

and difficult task, as the scale becomes larger. It is

generally said that code clone is one of the factors that

make software maintenance difficult. This project also

develops a maintenance support environment, which

visualizes the code clone information and also overcomes

the limitation of existing tools [2].One limitation of the

current research on code clones is that it is mostly focused

on the fragments of duplicated code (we call them simple

clones), and not looking at the big picture where these

fragments of duplicated code are possibly part of a bigger

replicated program structure. We call these larger

granularity similarities structural clones [3].Reuse only

what is similar, knowing clones helps in reengineering of

legacy systems for reuse. Detection of large-granularity

structural clones becomes particularly useful in the reuse

context . While the knowledge of structural clones is

usually evident at the time of their creation, we lack

formal means to make the presence of structural clones

visible in software, other than using external

documentation or naming conventions[4]. Generally

speaking, templates, as a common model for all pages,

occur quite fixed as opposed to data values which vary

across pages. Finding such a common template requires

multiple pages or a single page containing multiple

records as input. When multiple pages are given, the

extraction target aims at page-wide information [5] .One

limitation of the current research on code clones is that it

is mostly focused on the fragments of duplicated code (we

call them simple clones), and not looking at the big picture

where these fragments of duplicated code are possibly part

of a bigger replicated program structure. We call these

larger granularity similarities structural clones [6].

Existing System

Refactoring is a transformation that preserves the external

behavior of a program and improves its internal quality.

Usually, compilation errors and behavioral changes are

avoided by preconditions determined for each refactoring

transformation. However, to formally define these

preconditions and transfer them to program checks is a

rather complex task. In practice, refactoring engine

developers commonly implement Vulnerability in an ad

hoc manner since no guidelines are available for

evaluating the correctness of refactoring implementations.

As a result, even mainstream refactoring engines contain

critical bugs. We present a technique to test Java

refactoring engines. It automates test input generation by

using a Java program generator that exhaustively generates

programs for a given scope of Java declarations. The

refactoring under test is applied to each generated

program. The technique uses SafeRefactor, a tool for

detecting behavioral changes, as an oracle to evaluate the

correctness of these transformations. Finally, the technique

classifies the failing transformations by the kind of

behavioral change or compilation error introduced by

them. We have evaluated this technique by testing 29

Vulnerability in Eclipse JDT, NetBeans, and the JastAdd

Refactoring Tools. We analyzed 153,444 transformations,

and identified 57 bugs related to compilation errors, and

63 bugs related to behavioral changes.

Problem Identified

Although an oversized endeavor on internet application

security has been occurring for quite adecade, the safety of

internet applications continues to be a difficult downside. a

vital part of thatdownside derives from vulnerable ASCII

text file, often written in unsafe languages like PHP.ASCII

text file static analysis tools square measure an answer to

search out vulnerabilities,however they have an inclination

to come up with false positives, and need right smart effort

forprogrammers to manually fix the code. we tend to

explore the utilization of a mixture of ways tofind

vulnerabilities in ASCII text file with fewer false

positives. we tend to mix taint analysis,that finds candidate

vulnerabilities, with data processing, to predict the

existence of false positives. This approach brings along 2

approaches that square measure apparently

orthogonal:humans secret writing the data regarding

vulnerabilities (for taint analysis), joined with the onthe

face of it orthogonal approach of mechanically getting that

data (with machine learning, forinformation mining).

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI10.17148/IJARCCE.2016.510109 548

An approach for mechanically protectiveweb applications

whereas keeping the computer programmer within the

loop. The approach consists in analyzing the net

application ASCII text filesearching for input validation

vulnerabilities, and inserting fixes in the same code to

correct these flaws. The computer programmer is

unbroken in the loop by being allowed to grasp wherever

the vulnerabilitieswere found, and the way they were

corrected

Proposed Methodology

A code clone is a code portion in source files that is

identical or similar to another. It is common opinion that

code clones make the source files very hard to modify

consistently. Clones are introduced for various reasons

such as lack of a good design, fuzzy requirements,

undisciplined maintenance and evolution, lack of suitable

reuse mechanisms, and reusing code by copy-and-paste.

Thus, code clone detection can effectively support the

improvement of the quality of a software system during

software maintenance and evolution.

The Internet and World Wide Web diffusion are producing

a substantial increase in the demand of web sites and web

applications. The very short time-to-market of a web

application, and the lack of method for developing it,

promote an incremental development fashion where new

pages are usually obtained reusing (i.e. “cloning”) pieces

of existing pages without adequate documentation about

these code duplications and redundancies. The presence of

clones increase system complexity and the effort to test,

maintain and evolve web systems, thus the identification

of clones may reduce the effort devoted to these activities

as well as to facilitate the migration to different

architectures.This project proposes an approach for

detecting clones in web sites and web applications,

obtained tailoring the existing methods to detect clones in

traditional software systems. The approach has been

assessed performing analysis on several web sites and web

applications.

Maintaining software systems is getting more complex and

difficult task, as the scale becomes larger. It is generally

said that code clone is one of the factors that make

software maintenance difficult. This project also develops

a maintenance support environment, which visualizes the

code clone information and also overcomes the limitation

of existing tools.

Algorithm

intLevenshteinDistance(char s[1..m], char t[1..n])

{

// for all i and j, d[i,j] will hold the Levenshtein distance

between

// the first i characters of s and the first j characters of t;

// note that d has (m+1)x(n+1) values

declareint d[0..m, 0..n]

clear all elements in d // set each element to zero

// source prefixes can be transformed into empty string by

// dropping all characters

for i from 1 to m

{

d[i, 0] := i

}

// target prefixes can be reached from empty source prefix

// by inserting every characters

for j from 1 to n

{

d[0, j] := j

}

for j from 1 to n

{

for i from 1 to m

{

if s[i] = t[j] then

d[i, j] := d[i-1, j-1] // no operation required

else

d[i, j] := minimum

 (

d[i-1, j] + 1, // a deletion

d[i, j-1] + 1, // an insertion

d[i-1, j-1] + 1 // a substitution

)

}

}

return d[m,n]

}

Computing the Levenshtein distance is based on the

observation that if we reserve a matrix to hold the

Levenshtein distances between all prefixes of the first

string and all prefixes of the second, then we can compute

the values in the matrix in a dynamic programming

fashion, and thus find the distance between the two full

strings as the last value computed.

Levenshtein distance Algorithm

In information theory and computer science, the

Levenshtein distance is a string metric for measuring the

amount of difference between two sequences. The term

edit distance is often used to refer specifically to

Levenshtein distance.

In approximate string matching, the objective is to find

matches for short strings, for instance, strings from a

dictionary, in many longer texts, in situations where a

small number of differences is to be expected. Here, one

of the strings is typically short, while the other is

arbitrarily long. This has a wide range of applications, for

instance, spell checkers, correction systems for optical

character recognition, and software to assist natural

language translation based on translation memory.

The Levenshtein distance can also be computed between

two longer strings, but the cost to compute it, which is

roughly proportional to the product of the two string

lengths, makes this impractical. Thus, when used to aid in

fuzzy string searching in applications such as record

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI10.17148/IJARCCE.2016.510109 549

linkage, the compared strings are usually short to help

improve speed of comparisons.

Levenshtein distance is not the only popular notion of edit

distance. Variations can be obtained by changing the set of

allowable edit operations: for instance,

 length of the longest common subsequence is the

metric obtained by allowing only addition and

deletion, not substitution;

 the Damerau–Levenshtein distance allows addition,

deletion, substitution, and the transposition of two

adjacent characters;

 theHamming distance only allows substitution (and

hence, only applies to strings of the same length).

Edit distance in general is usually defined as a

parametrizable metric in which a repertoire of edit

operations is available, and each operation is assigned a

cost (possibly infinite).

1.Web URL Identification

In computing, a Uniform Resource Locator (URL) is a

type of Uniform Resource Identifier (URI) that specifies

where an identified resource is available and the

mechanism for retrieving it. In popular usage and in many

technical documents and verbal discussions it is often,

imprecisely and confusingly, used as a synonym for

uniform resource identifier. The confusion in usage stems

from historically different interpretations of the semantics

of the terms involved. In popular language a URL is also

referred to as a Web address.

2. Information Extraction and Parsing

The HTML Parsing module is a class for accessing HTML

as tokens. An HTML Parsing object gives you one token

at a time, much as a file handle gives you one line at a

time from a file. The HTML can be tokenized from a file

or string. The tokenizer decodes entities in attributes, but

not entities in text. A program that extracts information by

working with a stream of tokens doesn‟t have to worry

about the peculiarity of entity encoding, whitespace,

quotes, and trying to work out where a tag ends.

Regular expressions are powerful, but they‟re a painfully

low-level way of dealing with HTML. The system

processes the spaces and new lines, single and doubles

quotes, HTML comments, and a lot more. The next step

up from a regular expression is an HTML tokenize. In this

chapter, we‟ll use HTML Parser to extract information

from HTML files. Using these techniques, you can extract

information from any HTML file, and never again have to

worry about character-level trivia of HTML markup. And

automatic passage extraction methods from the body may

be worthwhile. Implications of the findings for aids to

summarization, and specifically the Text

3. Template Finding & Training

Levinstein Distance also finds some large trustworthy

information such as A1 Books, which provides 86 of 100

books with an accuracy of 0.878 in detecting web

vulnerability. Please notice thatLevinstein Distance uses

no training data, and the testing data is manually created

by reading the authors‟ names from book covers.

Therefore, we believe the performs iterative computation

to find out the set of authors for each web page. In order to

test its accuracy, we randomly select 100 web page and

manually find out their vulnerability.

4.VulnerabilityDetection and Mining

Finally, we perform an interesting experiment on finding

trustworthy websites. It is well known that Google (or

other search engines) is good at finding authoritative

websites. However, do these websites provide accurate

information? To answer this question, we compare the

online bookstores that are given highest ranks by Google

with the bookstores with highest trustworthiness found by

Levenshtein distance uses iterative methods to compute

the website trustworthiness and fact confidence, which is

widely used in many link analysis approaches, . The

common feature of these approaches is that they start from

some initial state that is either random or uninformative.

Then, at each iteration, the approach will improve the

current state by propagating information (weights,

probability, trustworthiness, etc.) through the links.

ArchitectureDiagram

Experimental Results
CODE clones are similar program structures of

considerable size and significant similarity. Several studies

suggest that as much as 20-50 percent of large software

systems consist of cloned code . Knowing the location of

clones helps in program understanding and maintenance.

Some clones can be removed with refactoring , by

replacing them with function calls or macros, or we can

use unconventional metalevel techniques such as Aspect-

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI10.17148/IJARCCE.2016.510109 550

Oriented Programming or XVCL to avoid the harmful

effects of clones. Cloning is an active area of research,

with a multitude of clone detection techniques been

proposed in the literature. One limitation of the current

research on code clones is that it is mostly focused on the

fragments of duplicated code (we call them simple clones),

and not looking at the big picture where these fragments of

duplicated code are possibly part of a bigger replicated

program structure.We call these larger granularity

similarities structural clones. Locating structural clones

can help us see the forest from the trees, and have

significant value for program understanding, evolution,

reuse, and reengineering.

Clone Vulnerability detection

The limitation of considering only simple clones is known

in the field. The main problem is the huge number of

simple clones typically reported by clone detection tools.

There have been a number of attempts to move beyond the

raw data of simple clones. It has been proposed to apply

classification, filtering, visualization, and navigation to

help the user make sense of the cloning information.

Another way is to detect clones of larger granularity than

code fragments. For example, some clone detectors can

detect cloned files , while others target detecting purely

conceptual similarities using information retrieval methods

rather than detecting simple clones

Document Testing andclustering

Document clustering (also referred to as Text clustering) is

closely related to the concept of data clustering. Document

clustering is a more specific technique for unsupervised

document organization, automatic topic extraction and fast

information retrieval or filtering.

A web search engine often returns thousands of pages in

response to a broad query, making it difficult for users to

browse or to identify relevant information. Clustering

methods can be used to automatically group the retrieved

documents into a list of meaningful categories, as is

achieved by Enterprise Search engines such as Northern

Light and Vivisimo or open source software such as

Carrot2.

Evaluation tree merging

According to our page generation model, data instances of

the same type have the same path from the root in the

DOM trees of the input pages. Thus, our algorithm does

not need to merge similar subtrees from different levels

and the task to merge multiple trees can be broken down

from a tree level to a string level. Starting from root nodes

<html> of all input DOM trees, which belong to some type

constructor we want to discover, our algorithm applies a

new multiple string alignment algorithm to their first-level

child nodes. There are at least two advantages in this

design. First, as the number of child nodes under a parent

node is much smaller than the number of nodes in the

whole DOM tree or the number of HTML tags in a

Webpage, thus, the effort for multiple string alignment

here is less than that of two complete page alignments in

RoadRunner . Second, nodes with the same tag name (but

with different functions) can be better differentiated by the

subtrees they represent, which is an important feature not

used in EXALG. Instead, our algorithm will recognize

such nodes as peer nodes and denote the same symbol for

those child nodes to facilitate the following string

alignment. After the string alignment step, we conduct

pattern mining on the aligned string S to discover all

possible repeats (set type data) from length 1 to length

jSj=2. After removing extra occurrences of the discovered

pattern (as that in DeLa), we can then decide whether data

are an option or not based on their occurrence vector, an

idea similar to that in EXALG . The four steps, peer node

recognition, string alignment, pattern mining, and optional

node detection, involve typical ideas that are used in

current research on Web data extraction . However, they

are redesigned or applied in a different sequence and

scenario to solve key issues in page-level data extraction.

Testing and Evaluation of page level

Page classification has been addressed with different

objectives and methods. Most work concerned form

classification methods that are aimed at selecting an

appropriate reading method for each form to be processed.

Other approaches address the problem of grouping

together similar documents in business environments, for

instance separating business letters from technical papers

In the last few years the classification of pages in journals

and books received more attention. An important aspect of

page classification are the features that are extracted from

the page and used as input to the classifier. Sub-symbolic

features, like the density of black pixels in a region, are

computed directly from the image. Symbolic features, for

instance the number of horizontal lines, are extracted from

a segmentation of the image. Structural features (e.g.

relationships between objects in the page) can be

computed from a hierarchical description of the document.

Textual features, for instance presence of some keywords,

are obtained from the text in the image recognized by an

Optical Character Recognition program

Testing and Evaluation of record level

The automatically generated wrapper described in Zhao et

al. for instance extracts search result records (SRRs) based

on the HTML tag structures. They use learned tag paths

pointing to the first (tag) line of candidate records. Their

main assumption is that SRRs are usually located in the

same sub-tree and its tag path follows certain patterns.

Next, they identify the data records in a sub-tree based on

learned separators tags and finally generate a regular

expression consisting of a path and multiple separators.

The regular expression is evaluated on the tag level which

requires that the page must be parsed. To compensate path

and separator variations, a wrapper is learned from

multiple result pages. Compared to our approach the

wrapper extracts the data records as a whole (record level)

and does not focus on the attributes contained in the data

records (attribute level). Additionally, their approach

requires a parser, which also corrects the source to apply

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI10.17148/IJARCCE.2016.510109 551

the path expressions learned from the parse tree. Path

variations can only be handled by learning a wrapper from

multiple result pages, i.e. five result pages and one non-

result page are needed in the wrapper generation phase. In

contrast, ViPER needs only one result

page to generate a wrapper. In Crescenzi et al ,union-free

regular expressions are deduced, which cannot capture the

full diversity of structures presented in HTML. Wang and

Lochovsky [2003] propose a system which applies a

deduced regular expression for extracting data records

from documents. Here labeling can only be carried out

after all records have been expensively aligned, i.e.

streaming based processing is impossible. All systems

mentioned do not support streaming based web content

extraction

The last experiment compares FiVaTech with the two

visual-based data extraction systems, ViPER and MSE.

The first one (ViPER) is concerning with extracting SRRs

from a single (major) data section, while the second one is

a multiple section extraction system. We use the 51

Websites of the Testbed referred above to compare

FiVaTech with ViPER, and the 38 multiple sections

Websites used in MSE to compare our system with MSE.

Actually, extracting of SRRs from Webpages that have

one or more data sections is a similar task. The results in

Table 3 show that all of the current data extraction systems

perform well in detecting data record boundaries inside

one or more data sections of a Webpage. The closeness of

the results between FiVaTech and the two visual-based

Web data extraction systems ViPER and MSE gives an

indication that until this moment visual informations do

not provide the required improvement that researchers

expect. This also appeared in the experimental results of

ViNTs ; the visual-based Web data extraction with and

without utilizing visual features. FiVaTech fails to extract

SRRs when the peer node recognition algorithm

incorrectly measures the similarities among SRRs due to

the very different structure among them. Practically, this

occurred very infrequently in the entire test page (e.g., site

numbered 27 in the Testbed). Therefore, now, we can

claim that SRRs extraction is not a key challenge for the

problem of Web data extraction.

Comparative study with graph

Our experiment assumes the following situation: A

developer starts building an application and uses classes

from a library l that are unknown to her. To help the

developer avoid bugs due to incorrect usage of those

classes, her IDE supports lightweight type state

verification. Whenever the developer changes a method

that uses classes of l for which a specification is available,

the IDE launches the type state verifier. The verifier then

analyzes all changed methods and looks for incorrect

usage of classes; if it finds a violation, it is presented to the

user. Obviously, we would like to catch as many defects

and report as few as possible.

Among the first approaches that specifically mine models

for classes is the work by Whaley et al. Theirtechnique

mines models with anonymous states and slices models by

grouping methods that access the same fields. mine so-

called extended finite state machines with anonymous

states. To compress models, the algorithm merges states

that have the same k-future. In terms of static techniques,

there is also a huge number of different approaches.

mine object usage models that describe the usage of an

object in a program. They apply concept analysisto find

code locations where rules derived from usage models are

violated. use an inter-procedural path-sensitive analysis to

infer preconditions for method invocations. Discover that

static mining of automata based specifications requires

precise aliasing information to produce reliable results. In

the area of web services. mine behavior protocols that

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI10.17148/IJARCCE.2016.510109 552

describe the usage of a web service. The approach uses a

sequence of synthesis and testing stages that uses

heuristics to refine an initially mined automaton. In

contrast, mines type state automata for web application

programs

Identifying the Source of Clones

To find which of the following file categories contributed

most clones in web Applications:

i. Static files – files that needs to be delivered „as is‟ to the

browser. Includes markup files, style sheets and client side

scripts (e.g., HTML, CSS, XSL, and JavaScript).

ii. Server pages – files containing embedded server side

scripting. These generate dynamic content at runtime (e.g.,

JSP, PHP, ASP, and ASP.NET).

iii. Templates – files related to additional templating

mechanisms used.

The HTML files are first parsed, the HTML tags are

extracted and the composite tags are substituted with their

equivalent ones;

The resulting HTML-strings are composed by symbols

from the A² alphabet;

These strings are processed in order to eliminate the

symbols not belonging to the A* alphabet;

The final HTML-strings are submitted to the computation

of the Extended Co-Citation distance:

The Distance matrix obtained includes the distance

between each couple of analyzed ASP-strings.

Example

With the following HTML alphabet table:

Consider the following two HTML code lines:

<td width=“18%”>

<imgsrc=“../images/Nuovo.jpg” width=“92”

height=“27”></td>

Where in the first row a reduced HTML tags alphabet is

reported, while the second row reports the symbols

corresponding to each tag. By analysizing the two HTML

code lines ,using the table, we can identify the following

sequence of HTML tags:

(td, width, img, src, width, height, /td)

And the corresponding strings of symbols:

HTML-string u = hifgieb

Consider the following two HTML code lines:

<td width=“35%”><div align=“right”>

<imgsrc =“ ../pic1.jpg” width=“92”

height=“27”></div></td>

With reference to same alphabet-table used in the previous

example we can identify the following sequence of HTML

tags:

(td, width,div,align, img, src, width, height,/div,

/td)And the corresponding strings of symbols:

HTML-string v = hidcfgieab

The optimal alignment of u and v is:

The Extended Co-Citation distance D(u, v) = 3.They are

considered as duplicated pages (similar pages) if their

distance is small.

It is a Levinstein Edit Distance algorithm that extends the

traditional Levinstein Edit Distance concepts. The

Levinstein Edit Distance analysis has been used to

measure the similarity of papers, journals, or authors for

clustering. For a pair of documents p and q, if they are

both cited by a common document, documents p and q is

said to be cocited.

Then number of documents that cite both p and q is

referred to as the Levinstein Edit Distance degree of

documents p and q. The similarity between two documents

is measured by their Levinstein Edit Distance degree. This

type of analysis has been shown to be effective in a broad

range of disciplines, ranging from author Levinstein Edit

Distance analysis of scientific sub fields to journal

Levinstein Edit Distance analysis. In the context of the

web, the hyperlinks are regarded as citations between the

pages. If a web page p has a hyperlink to another page q,

page q is said to be cited by page p. In this sense, citation

and Levinstein Edit Distance analyses are smoothly

extended to the web page hyperlink analysis.

The extended Levinstein Edit Distance algorithm is

presented with a new page source. It is constructed as a

directed graph with edges indicating hyperlinks and nodes

representing the following pages.

 page u

 Up to B parent pages of u and up to BF child pages of

each parent page that are different from u

 Up to F child pages of u and up to FB parent pages of

each child page that are different from u

The parameters B, BF, and FB are used to keep the page

source to a reasonable size. Before giving the Extended

Levinstein Edit Distance algorithm for finding relevant

pages, the following concepts are defined

Definition 1:

Two pages P1 and P2 are back cocited if they have a

common parent page. The number of their common

parents is their back Levinstein Edit Distance degree,

denoted as b(P1,P2). Two pages P1 and P2 are forward

cocited if they have a common child page. The number of

their common children is their forward Levinstein Edit

Distance degree, denoted as

f (P1,P2).

Definition 2:

The pages are intrinsic pages if they have same page

domain name.

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI10.17148/IJARCCE.2016.510109 553

Definition 3:

Two pages are near-duplicate pages if

i. they each have more than 10 links

ii. they have atleast 95 percent of their links in common

Based on the above concepts, the complete Extended

Levinstein Edit Distance algorithm to find relevant pages

of the given web page u is as follows:

Step 1: Choose up to B arbitrary parents of u.

Step 2: For each of these parents p, choose up to BF

children (different from u) of p that surround the link

from p to u. Merge the intrinsic or near-duplicate parent

pages, if they exist, as one whose links are the union of the

links from the merged intrinsic or near-duplicate parent

pages, i.e., let Pu be a set of parent pages of u,

Step 3: Choose first F children of u.

 Step 4: For each of these children c, choose up to FB

parents (different from u) of c with highest in-degree.

Merge the intrinsic or near-duplicate child pages, if they

exist, as one whose links are the union of the links to the

merged intrinsic or near-duplicate child pages, i.e., let Cu

be a set of child pages of u,

Step 5:

For a given selection threshold δ, select pages from BS

and FS such that their back Edit Distance degrees or

forward Edit Distance degrees with u are greater than or

equal to δ. These selected pages are relevant pages of u,

i.e., the relevant page set RP of u is constructed as:

Although the LED algorithm is simple and easy to

implement, it is unable to reveal deeper relationships

among the pages. For example, if two pages have the same

back (or forward) Edit Distance degree with the given

page u, the algorithm cannot tell which page is more

relevant to u.

Detecting Vulnerability server pages:

Active server pages (ASP) is one of the technologies used

to create server pages; we referred to it to define an

approach to detect duplicated static server pages. The

approach is based on the computation of the LE distance

metric.

The built-in ASP objects, together with their methods,

properties and collections, may characterize the control

component of an ASP page. Thus, an ASP page may be

thought of as a sequence of the references to these

elements. The reason of that is based on the hypothesis

that, if two ASP pages present the same sequence of

references to ASP features, they could have the same

behavior.The symbol alphabet to be used for the LE

distancecomputation will include all the built-in ASP

object elements that can be referred in an ASP page.ASP

Pages will be analyzed and an ASP-string extracted for

each ASP page using an approach similar to the one used

to compute the LE distance for HTML pages: for each

couple of server pages, both ASP distance and HTML

distance are computed; pages Having null distance will,

again be considered as clones.only the LE distance has

been considered for detecting duplicated static server

pages.

Experimental Result

In comparison result, the result of this project will be

compare with the existing tools like CCFinder-a clone

detection tool, GEMINI- a clone analysis tool, etc.

6. Outcomes

WA1

WA2

WA3

WA4

WA5

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI10.17148/IJARCCE.2016.510109 554

Detection of vulnerability among the specific web

applications

CONCLUSION

In this paper we have proposed a method for testing ASP

web applications Vulnerability automatically. Our starting

point for supportingASP webVulnerability is a crawler for

ASP web applications that we proposed in our earlier work

which can dynamicallymake a full pass over an ASP web

application. Our current work consists of extending the

crawler substantially for supporting automated testing of

modern web applications Vulnerability. We developed a

series of plugins, collectively, for invariant-based testing

and test suite generation. o summarize, this paper makes

the following contributions:

1) A series of fault models that can be automatically

checked on any user interface state, capturing

differentcategories of errors that are likely to occur in ASP

web applications (e.g., DOM violations, error message

occurrences),through (DOM-based) generic and

applicationspecific invariants that serve as oracles.

2) A series of generic invariant types (e.g., XPath,

template based Regular Expression, JAVASCRIPT

expression) forexpressing web application invariants for

testing.

3) An algorithm for deriving a test suite achieving all

transitions coverage of the state-flow graph

obtainedduring crawling. The resulting test suite can be

refined manually to add test cases for specific paths or

states,and can be used to conduct regression testing of

ASP web applications.

4) An extension of our open source ASP web crawler, and

the implementation of the testing approach, offering

generic invariant checking components as well as a

plugin-mechanism to add applicationspecificstate

validators and test suite generation.

5) An empirical evaluation, by means of three case studies,

of the fault revealing capabilities and the scalability ofthe

approach, as well as the level of automation that can be

achieved and manual effort required to use theapproach.

Given the growing popularity of ASP web applications

Vulnerability, we see many opportunities for using in

practice. Furthermore,the open source and plugin-based

nature makes our tool a suitable vehicle for other

researchers interested in experimentingwith other new

techniques for testing ASP web applications. According to

our page generation model, data instances of the same type

have the same path in the DOM trees of the input pages.

Thus, the alignment of input DOM trees can be

implemented by string alignment at each internal node.

We design a new algorithm for multiple string alignment,

which takes optional- and set-type data into consideration.

The advantage is that nodes with the same tag name can be

better differentiated by the subtree they contain.

Meanwhile, theresult of alignment makes pattern mining

more accurate. With the constructed fixed/variant pattern

tree, we can easily deduce the schema and template for the

input Webpages. Although many unsupervised approaches

have been proposed for Web data extraction, very few

works (Road Runner and EXALG) solve this problem at a

page level. The proposed page generation model with tree-

based template matches the nature of the Webpages.

Meanwhile, the merged pattern tree gives very good result

for schema and template deduction. For the sake of

efficiency, we only use two or three pages as input.

Whether more input pages can improve the performance

requires further study. Also, extending the analysis to

string contents inside text nodes and matching schema that

is produced due to variant templates are two interesting

tasks that we will consider next.

REFERENCES

[1] P. Borba, A. Sampaio, A. Cavalcanti, and M. Corn´elio.Algebraic

reasoning for object-oriented programming. SCP, 52: 53–100,
2004.

[2] B. Daniel, D. Dig, K. Garcia, and D. Marinov. Automated testing of

refactoring engines.In ESEC/FSE ‟07.ACM, 2007.
[3] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and

D. Marinov. Test generation through programming in udita. In

ICSE ‟10, pages 225–234, 2010.
[4] V. Jagannath, Y. Y. Lee, B. Daniel, and D. Marinov.Reducing the

costs of bounded-exhaustive testing. In FASE ‟09, pages 171–185,

Berlin, Heidelberg, 2009. Springer-Verlag.
[5] G. C. Murphy, M. Kersten, and L. Findlater. How are Java software

developers using the Eclipse IDE? IEEE Software, 23:76–83, July

2006.

[6] E. Murphy-Hill and A. P. Black. Refactoring tools: Fitness for

purpose. IEEE Software, 25(5):38–44, 2008.
[7] W. Opdyke. Refactoring Object-Oriented Frameworks.PhD thesis,

University of Illinois at Urbana-Champaign, 1992.

[8] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.Feedbackdirected
random test generation. In ICSE ‟07, pages 75–84, Washington,

DC, USA, 2007. IEEE Computer Society.

[9] M. Sch¨afer and O. de Moor. Specifying and implementing
refactorings. In OOPSLA ‟10, pages 286–301. ACM, 2010.

[10] M. Sch¨afer, T. Ekman, and O. de Moor. Challenge proposal:

verification of refactorings. In PLPV ‟09, pages 67–72. ACM.
[11] Yoshiki Higo a,*, Toshihiro Kamiyab,ShinjiKusumoto a, Katsuro

Inoue a “Method and implementation for investigating code

clonesin a software system”, 2006 Elsevier.

